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Abstract

Recent efforts have attempted to describe the population structure of common chimpanzee, focusing on four subspecies: Pan

troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii. However, few studies have pursued the effects of natural

selection in shaping their response to pathogens and reproduction. Whey acidic protein (WAP) four-disulfide core domain (WFDC)

genes and neighboring semenogelin (SEMG) genes encode proteins with combined roles in immunity and fertility. They display a

strikingly high rate of amino acid replacement (dN/dS), indicative of adaptive pressures during primate evolution. In human popula-

tions, three signals of selection at the WFDC locus were described, possibly influencing the proteolytic profile and antimicrobial

activities of the male reproductive tract. To evaluate the patterns of genomic variation and selection at the WFDC locus in chimpan-

zees,wesequenced17WFDCgenesand47autosomalpseudogenes in68chimpanzees (15P. t. troglodytes,22P. t. verus, and31P. t.

ellioti). We found a clear differentiation of P. t. verus and estimated the divergence of P. t. troglodytes and P. t. ellioti subspecies in

0.173 Myr; further, at the WFDC locus we identified a signature of strong selective constraints common to the three subspecies in

WFDC6—a recent paralog of the epididymal protease inhibitor EPPIN. Overall, chimpanzees and humans do not display similar

footprintsof selectionacross theWFDC locus,possiblyduetodifferent selectivepressuresbetweenthetwospecies related to immune

response and reproductive biology.
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Introduction

Common chimpanzees and bonobos are different species of

the Pan genus (Pan troglodytes and P. paniscus, respectively),

separated by the geographical barrier of the Congo River.

Common chimpanzees are further divided into subspecies

across tropical Africa (Gonder et al. 1997, 2011). The issue

of genomic diversity and substructure among the different

chimpanzee subspecies is controversial and of great interest.

Briefly, P. troglodytes was traditionally divided in three subspe-

cies: P. t. verus, located in western Africa occupying the Upper

Guinea region; P. t. troglodytes extending throughout central

Africa; and P. t. schweinfurthii living in eastern Africa. Later,

the analysis of mitochondrial DNA (mtDNA) variation led to

the proposal of a fourth chimpanzee subspecies, P. t. ellioti

(also known as P. t. vellerosus), occurring in the Gulf of Guinea

(Nigeria and Cameroon) in a region limited by the Niger and

Sanaga rivers (supplementary fig. S1, Supplementary Material

online) (Patten and Unitt 2002; Becquet et al. 2007; Gonder

et al. 2006, 2011). Recent studies support the differentiation

of P. t. ellioti from P. t. troglodytes using ancestry-informative

markers, enabling the identification of the four subspecies

(Gonder et al. 2011, 2012). P. t. verus branched from the

last common chimpanzee ancestor ~0.46 Ma and P. t. ellioti

diverged from P. t. troglodytes and P. t. schweinfurthii ~0.32

Ma. Even though occasional hybridization occurs between

P. t. ellioti and P. t. troglodytes in the wild, these subspecies

remain as major genetic isolates (Gonder et al. 2011). Studies

regarding chimpanzee simian immunodeficiency virus (SIVcpz)

also support these findings, given that only P. t. troglodytes

and P. t. schweinfurthii are infected in the wild (>30% prev-

alence) and P. t. ellioti only get infected when kept in captivity

with P. t. troglodytes (Keele et al. 2006; Van Heuverswyn et al.

2007). SIVcpz is one of many infectious agents transferred to

humans from chimpanzees, and this zoonotic infection likely

provided the ancestor to the human immunodeficiency virus

(HIV) (Jones et al. 2008). Therefore, a better characterization

of episodes of natural selection in chimpanzees may provide

ways to further understand susceptibility to pathogens in hom-

inoids and to improve the conservation of wild chimpanzees.

Ecological changes in the natural habitat of P. troglodytes

have served to shape evolutionary immune responses to path-

ogens and adaptive responses in reproduction-related pheno-

types (Chimpanzee Sequencing and Analysis Consortium

2005). A genomic locus that is involved in both immune

response and reproduction is the whey acidic protein (WAP)

four-disulfide core domain (WFDC) locus (fig. 1). WFDC genes

(17 in total) encode small serine protease inhibitors with func-

tions of regulating endogenous proteases (Clauss et al. 2005;

Lundwall 2007). Neighboring genes semenogelin 1 and 2

(SEMG1 and SEMG2) encode the main proteins of the seminal

coagulum (Peter et al. 1998; de Lamirande 2007; Lundwall

2007). WFDC and SEMG genes evolved from the same

common ancestor and maintain some similar functions

involving antimicrobial, immune, and male reproduction activ-

ities (Yenugu et al. 2004; Bingle and Vyakarnam 2008; Clauss

et al. 2011). Well-characterized genes at the WFDC locus in-

clude peptidase inhibitor 3 (PI3; also known as elafin) and

secretory leucocyte proteinase inhibitor (SLPI), both pleiotropic

molecules synthesized at mucosal surfaces that play a role in

the surveillance against microbial and viral infections, includ-

ing HIV-1 (Williams et al. 2006). This locus also includes the

epididymal protease inhibitor EPPIN (also known as SPINLW1),

which coats the surface of human spermatozoa, binds to

SEMG1, and modulates the activity of prostate-specific anti-

gen (PSA) altogether providing antimicrobial protection for

spermatozoa (Wang et al. 2005; Edstrom et al. 2008; Zhao

et al. 2008). SEMG1 and SEMG2 play critical roles in semen

clotting and in antimicrobial and antiviral protection for sper-

matozoa in the female reproductive tract (Edstrom et al. 2008;

Martellini et al. 2009). WFDC and SEMG genes have been

shown to be targets of adaptive evolution in primates,

where SEMGs dN/dS values were positively correlated with

female promiscuity. Specifically, in monoandrous primates,

in which females mate with a single male (e.g., humans,

gorillas, and gibbons), the ejaculate is gelatinous, whereas in

polyandrous primates, in which females mate with multiple

partners per ovulatory period (e.g., chimpanzees and

macaques), the ejaculate forms a rigid copulatory plug that

prevents the insemination of females by competing males

(Dixson and Anderson 2002; Dixson and Anderson 2004). In

chimpanzees, the copulatory plug formation is associated with

a SEMG1 modular-based length expansion causing an

increase in protein crosslinking (Jensen-Seaman and Li 2003).

In human populations, the WFDC locus presents complex

selective signals, including recent balancing selection on

WFDC8 in Europeans and positive selection in SEMG1 in

Asians (Ferreira et al. 2011; Ferreira et al. 2013). In order to

evaluate the patterns of genomic variation and selection at the

WFDC locus in chimpanzees, we sequenced 18 WFDC and

SEMG genes and 47 control regions in 68 common chimpan-

zees from the subspecies P. t. troglodytes, P. t. verus, and

P. t. ellioti. Overall, we generated a total of ~13 Mb of high-

quality sequence data, describing 1,268 single-nucleotide

polymorphisms (SNPs), and we calculated summary statistics
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FIG. 1.—Schematic representation of the 20q13 WFDC locus, show-

ing the relative positions of the WFDC genes. As depicted, the WFDC locus

spans 700 kb and its genes are organized into two subloci (centromeric

and telomeric; WFDC-CEN and WFDC-TEL, respectively), separated by

215 kb of unrelated sequence.
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of population variation for 71 loci. We reconstructed the de-

mographic history of chimpanzees and found a clear differen-

tiation of P. t. verus from P. t. troglodytes and P. t. ellioti

subspecies and in general, for WFDC genes we did not find

departures from diversity levels observed in neutral evolving

regions. Nevertheless, we identified a signature of strong se-

lective constraints common to the three studied subspecies

and centered in the EPPIN-like gene, WFDC6. In several pri-

mate species, WFDC6 has lost the ability to inhibit PSA and in

others it appears to have accumulated different deleterious

mutations. Conversely, in chimpanzees and humans, the

seven disulfide bridges, known to confer antimicrobial prop-

erties to WFDC genes, are preserved in WFDC6. The fact that

chimpanzees have a polyandrous mating system, and as a

promiscuous species they are particularly likely to be exposed

to sexually transmitted pathogens, leads us to propose that

strong conservation of WFDC6 function has been necessary in

chimpanzees due to its crucial role in innate immunity of the

reproductive tract.

Materials and Methods

DNA Samples and Sequence Generation

The DNA samples include 68 wild-caught unrelated

chimpanzees (Becquet et al. 2007; Gonder et al. 2006,

2011), including Central African subspecies, P. t. troglodytes

(15 individuals), Western African subspecies, P. t. verus (22

individuals), and the Gulf of Guinea subspecies, P. t. ellioti

(31 individuals) (supplementary table S1, Supplementary

Material online). We studied the genetic variation in the

WFDC locus by Sanger sequencing the coding regions of 18

WFDC and SEMG genes (comprising a total of 66 exons) and

a number of intervening noncoding regions (spaced every

~10 kb). Additionally, we sequenced 47 pseudogenes located

in unrelated, neutrally evolving regions across the chimpanzee

genome, used as control regions, as previously described

(Andrés et al. 2010; Ferreira et al. 2013) (supplementary

table S2, Supplementary Material online).

Primers for amplification and sequencing were designed

based on the Human Genome Reference Sequence (March

2006 assembly - v36.1), available at the UCSC Genome

Browser (genome.ucsc.edu, last accessed December 24,

2013). All samples were polymerase chain reaction (PCR)-

amplified and analyzed by bidirectional Sanger sequencing.

Further details about PCR and DNA sequencing are available

from the authors upon request. The sequences were aligned

to the Human Genome v26.1 and polymorphic sites and fixed

differences were detected with phred-phrap-consed package

(Nickerson et al. 1997). To ensure sequence quality, we dis-

carded variant sites in the first and last 75 bp of each amplicon

segment. We manually curated sites found to have discordant

genotypes in different amplicons. The ancestral state of each

SNP was inferred by comparison with the human, orangutan,

and macaque genome sequences (Gibbs et al. 2007; Andrés

et al. 2010; genome.ucsc.edu).

Statistical Analysis

We assessed the subspecies differentiation levels by calculat-

ing the population differentiation (FST statistic) and by per-

forming principal component analysis (PCA) on the SNP data

(Excoffier 2002; Patterson et al. 2006). We used a locus-by-

locus analysis of molecular variance, using 20,000 simulations,

which was performed by Arlequin using its default values

(constant model; Excoffier et al. 2005). The EIGENSOFT soft-

ware package was used for PCA (Patterson et al. 2006). We

performed cluster analysis using STRUCTURE version 2.3

(Pritchard et al. 2000), assuming admixture and correlated

allele frequencies. Fifty iterations of the data at each

K¼ 1–5 with 500,000 Markov chain Monte Carlo (MCMC)

burn-in steps and 500,000 MCMC iterations. STRUCTURE

output was processed with CLUMPP and plotted with

DISTRUCT (Conrad et al. 2006). We used STRUCTURE har-

vester to determine the best K estimate. Population structure

analyses were performed blinded to a priori population labels.

A model of chimpanzee demography was inferred using

BP&P program which implements Bayesian inference with a

MCMC and accommodates a species phylogeny as well as

lineage sorting due to ancestral polymorphism (Rannala and

Yang 2003; Yang and Rannala 2010). We used a proposed

phylogenetic tree of the three chimpanzee subspecies

(Gonder et al. 2011) and included human as the outgroup.

A gamma prior G(2, 1,000), with mean 2/2,000¼ 0.001, was

used on the population size parameters (ys), and the age of

the root in the species tree (t0) was assigned to the gamma

prior G(25, 5,000). This was based on the assumption of di-

vergence time between chimpanzee and humans of 5 Myr

and a mutation rate of 10�9 per site/per year (2�10�8 per

site per 20-year generation). The other divergence time

parameters were assigned to the Dirichlet prior (Yang and

Rannala, 2010). The analyses were run twice to confirm con-

sistency, and parameters of historical demographic events are

expressed as the mean and 95% confidence intervals of the

posterior distributions.

Summary statistics of population genetic variation were

calculated using SLIDER (http://genapps.uchicago.edu/slider/

index.html, last assessed December 24, 2013). We assessed

statistical significance of summary statistics using an empirical

comparison to the control regions, by calculating the upper

and lower 2.5 percentiles of each distribution. Specifically, we

used the sequenced control regions to perform an empirical

comparison of nucleotide diversity (p) and Tajima’s D values

for each WFDC gene in each population. For the WFDC genes,

we ran 105 coalescent simulations using “ms” (Hudson 2002)

and mutation rate parameters estimated from the sequenced

data with SLIDER. For the population recombination parame-

ter, we used the PANMAP estimates of chimpanzee

Ferreira et al. GBE
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recombination. We assumed demographic models that in-

cluded constant population size, and historic events as previ-

ously described (Hey 2010; Wegmann and Excoffier 2010),

and as inferred by us for each subspecies. For every model,

we calculated a null distribution of summary statistics values

and calculated the 2.5th and 97.5th percentiles.

We performed HKA tests considering all subspecies in

DNAsp 5.1 and using a maximum-likelihood method that in-

corporates values for multiple neutrally evolving regions

(Hudson et al. 1987). McDonald–Kreitman test (MKT) was

calculated in DNAsp v5.1 using humans as the outgroup

and assuming two types of sites: putatively neutral sites

(Syn) and functional sites (NSyn) (Rozas and Rozas 1995;

Rozas 2009).

Haplotype phasing for all samples was inferred separately

for the WFDC centromeric and telomeric subloci (WFDC-CEN

and WFDC-TEL, respectively; see fig. 1 for WFDC locus sub-

structure) using PHASE2.1 (Stephens et al. 2001; Stephens

and Donnelly 2003). Haplotypes were independently inputted

in Haploview 4.2 (Barrett 2009) to calculate linkage disequi-

librium (LD) statistics, r2 and D0, and to identify LD and haplo-

type blocks (Gabriel et al. 2002). The potential functional

effects at the protein level of non-synonymous (NSyn) SNPs

and fixed differences were inferred using PolyPhen v2

(Adzhubei et al. 2010) and SIFT (Kumar et al. 2009).

Maximum-likelihood estimates of dN/dS (o; dS – synony-

mous substitution rate and dN – non-synonymous substitution

rate) were carried out using the codeml program from the

software package Phylogenetic Analysis by Maximum

Likelihood – PAML version 4.2 (Yang 2007). To run PAML,

we first reconstructed a phylogenetic tree (DNAml from

Phylogeny Inference Package [PHYLIP]; http://evolution.genet-

ics.washington.edu/phylip.html, last accessed December 24,

2013). We used the genomic sequences from human

(Homo sapiens), chimpanzee (Pan troglodytes), gorilla

(Gorilla gorilla), orangutan (Pongo pygmaeus), gibbon

(Nomascus leucogenys), rhesus monkey (Macaca mulatta),

baboon (Papio anubis), and marmoset (Callithrix jacchus).

They were retrieved from public databases using EPPIN iso-

form 1 (Uniprot: O95925) and WFDC6 isoform 1 (Uniprot:

Q9BQY6) as BLAT templates. Pan paniscus was not included

in the analysis as the cDNA sequence is equal to P. troglodytes.

The phylogenetic tree diverged from the known primate phy-

logeny in the position of orangutan and gibbon branches. To

test for variable selection pressures among branches, we per-

formed the branch model using either the null model (one o
ratio for the entire tree) or nested models (two-ratios, three-

ratios, four-ratios for the tree) (Yang 1997; Bielawski and

Yang 2003). The values ofo>1 were considered as evidences

of positive selection, and the values o< 1 were considered as

an indication of purifying selection. The test statistic was con-

structed as twice the difference in the log of the likelihoods

(�2�l), and significance was assessed by comparing this to

the w2 statistic.

Results

We sequenced with Sanger technology 68 chimpanzees (sup-

plementary table S1, Supplementary Material online) for all

WFDC and SEMG exons distributed across 54 amplicons and

47 neutrally evolving control regions, for a total of 13 Mb

(supplementary table S2, Supplementary Material online).

This resulted in the identification of 419 SNPs in the control

regions and 849 SNPs in the WFDC locus.

Chimpanzee Genetic Structure and Demography

We first characterized the levels of differentiation between

subspecies at the control regions using FST (Excoffier 2002)

and PCA (Patterson et al. 2006). The pairwise FST values

show lower differentiation between P. t. troglodytes and

P. t. ellioti (0.104) than each of them compared with P. t.

verus (0.392 and 0.400, respectively). The first two principal

components (PC1 and PC2) separate P. t. verus from the other

two subspecies, and the third principal component appears

to not separate completely P. t. troglodytes from P. t. ellioti

(supplementary fig. S2, Supplementary Material online).

Contrary to previous studies, we could not separate the

three subspecies using PCA (Gonder et al. 2011; Bowden

et al. 2012). We further examined the shared ancestry levels

of the individuals by performing a Bayesian model-based clus-

tering approach available in the STRUCTURE software

(Pritchard et al. 2000; Falush et al. 2003). The analysis was per-

formed blinded to a population label and two groups (K¼2)

were recovered (supplementary fig. S3, Supplementary

Material online). The subspecies P. t. troglodytes and P. t. ellioti

could not be confidently distinguished even after the inclusion

of the 849 SNPs from the WFDC locus (results not shown).

We inferred the demographic history of the three chimpan-

zee subspecies from control regions data using a Bayesian

MCMC approach, based on the phylogenetic tree proposed

by previous studies (Gonder et al. 2011; Bowden et al. 2012).

The estimated effective population sizes were ~52,000 and

~21,000 for P. t. troglodytes and P. t. verus, respectively

(table 1). These values are within the range of previous

models of chimpanzee demography as indicated by the over-

laps between confidence intervals (table 1), and the 0.31 Myr

estimate for divergence from P. t. verus is in the same time

frame from previous studies (table 1; Becquet et al. 2007; Hey

2010; Wegmann and Excoffier 2010; Gonder et al. 2011). For

P. t. ellioti, we estimated a recent divergence from P. t. trog-

lodytes around 0.173 Ma and an effective size of ~43,000

individuals, demonstrating values that were of similar order

of magnitude to P. t. troglodytes. These two subspecies

appear to have preserved a similar effective population size

to their ancestral population (fig. 2 and table 1). Conversely,

the origin of P. t. verus is associated with a bottleneck and

effective population size reduction (fig. 2), providing a good fit

to previous models of chimpanzee demography (Becquet
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et al. 2007; Hey 2010; Wegmann and Excoffier 2010; Gonder

et al. 2011).

WFDC Locus Sequence Diversity

The patterns of variation in SEMG1 among individuals include

a polymorphic highly repetitive region (9–13 modules

encoded by SEMG1 exon 2) (Jensen-Seaman and Li 2003).

Because the modular nature of SEMG1 precluded a consistent

and unambiguous sequence alignment, the SNPs located in

this repetitive region were removed from the analysis for qual-

ity purposes. A total of 766 fixed differences were identified in

comparison with the human genome reference. Twenty-five

indels (insertions/deletions) were found, 24 of which were

located in introns, UTRs, and intergenic regions. One remain-

ing indel located in WFDC6 was identified in a single chromo-

some (f¼0.02). Indels were excluded from all analyses, due to

their distinct mutation rate and the low overlap with func-

tional regions, which are unlikely to affect protein function

or expression. Additionally, from the 456 human–chimpanzee

fixed differences located in the WFDC locus, only 19 were

within coding regions and chimpanzee-specific. Of these, 17

were non-synonymous (NSyn) and most of them were classi-

fied as benign by Polyphen v2 and SIFT (supplementary

table S3, Supplementary Material online).

To characterize the within-subspecies variation, we ana-

lyzed the folded site frequency spectrum (SFS) for all SNPs

and Syn and NSyn sites among WFDC genes (fig. 3).

Additionally, we analyzed the deleterious effects of each

coding substitution using SIFT and Polyphen (Kumar et al.

2009; Adzhubei et al. 2010; supplementary table S3,

Supplementary Material online). Despite the higher number

of NSyn sites in the WFDC genes, these are maintained at low

frequencies in the overall species, consistent with the pre-

dicted mildly deleterious effects (supplementary table S3,

Supplementary Material online). For each WFDC gene, we

calculated summary statistics such as nucleotide diversity (p),

Tajima’s D (Tajima 1989), Fu and Li’s D (Fu and Li 1993), Fay

Table 1

Estimated Parameters Using the 47 Control Regions

Current Studya Gonder et al. (2011) Wegmann and Excoffier (2010)b Hey (2010)a Bequet (2007)a

NPtt 51,975 (19,737–69,162) — 134,900 (75,900–251,200) 26,900 (16,100–43,900) 23,100 (8,600–59,700)

NPte 43,512 (19,925–56,175) — — — —

NPtv 21,062 (16,500–27,637) — 9,800 (5,000–72,400) 7,400 (5,400–10,000) 10,100 (7,700–21,100)

NAPtt-Pte 57,412 (18,762–126,287) — — — —

NAPtt-Pte-Ptv 70,525 (58,850–91,900) — — — —

NAPan 22,787 (1,025–47,175) — 89,100 (36,300–245,500) 7,100 (3,500–12,500) 32,900 (22,200–48,700)

TDIVHomoPan (Myr) 6.58 (4.34–8.54) — — — —

TDIV Ptt-Pte-Ptv (MY) 0.31 (0.236–0.405) 0.46 (0.37–0.53) 0.55 (0.34–0.91) 0.46 (0.35–0.65) 0.44 (0.32–1.10)

TDIV Ptt-Pte (Myr) 0.173 (0.034–0.237) 0.11 (0.09–0.13) — — —

NPtt, P. t. troglodytes effective population size; NPte, P. t. ellioti effective population size; NPtv, P. t. verus effective population size; NAPtt-Pte, ancestral effective population
size of P. t. troglodytes and P. t. ellioti; NAPtt-Pte-Ptv, ancestral effective population size of the three subspecies; NAPan, ancestral effective population size of common
chimpanzee; TDIVHomoPan, human–chimpanzee divergence time in million years; TDIV Ptt-Pte-Ptv, P. t. verus divergence time from P. t. troglodytes and P. t. ellioti; TDIV Ptt-Pte,
P. t. troglodytes and P. t. ellioti divergence time in million years.

aConfidence intervals are 95% highest posterior density intervals.
bConfidence intervals are 90% highest posterior density intervals.

P. t. troglodytes P. t. ellio� P. t. verus H. Sapiens

NPtt NPte NPtv
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T
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FIG. 2.—Schematic representation of the inferred demographic history of the three subspecies: Pan troglodytes troglodytes (Ptt); P. t. verus (Ptv); and

P. t. ellioti (Pte). NA, ancestral effective population size; N, effective population size; TDIV, divergence time.
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and Wu’s H (Fay and Wu 2005; Zeng et al. 2006), and HKA

(Hudson et al. 1987) (table 2).

Analysis of the SFS and summary statistics show P. t. trog-

lodytes as the subspecies with the highest nucleotide diversity

levels and P. t. verus as the most homogeneous subspecies

(supplementary fig. S4, Supplementary Material online, and

table 2). Both P. t. troglodytes and P. t. ellioti Tajima’s D values

are skewed toward negative values, mostly due to their large

effective population size and a population expansion that

is estimated to have occurred around 50,000 years ago

(Wegmann and Excoffier 2010). Nonetheless, P. t. verus

Tajima’s D values are less negative than the other two subspe-

cies, which is likely to result from an extreme decrease in

population size and genetic drift (Caswell et al. 2008; Hey

2010; Wegmann and Excoffier 2010). Overall, the analysis

of the summary statistics of WFDC genes shows no wide-

spread significant departure from neutrality but instead

reveals only mildly negative or positive values (table 2).

Selection Tests

To determine whether specific WFDC genes have been under

selective pressures in one or all chimpanzee subspecies, we

started by comparing the summary statistics for each WFDC

gene with the empirical distribution of Tajima’s D in the con-

trol regions (fig. 4). Only WFDC6 and EPPIN show unusual

patterns in P. t. troglodytes (fig. 4). Although in this subspecies

the allele frequency spectrum is generally skewed toward rare

alleles, the Tajima’s D values of WFDC6 (�2.073;

P value¼1�4) and EPPIN (�1.811; P value¼0.025) present

the lowest values of control and WFDC regions. WFDC6 also

presented a low Tajima’s D value (�2.1039) and significant

HKA (P¼ 0.013) when combining all individuals sequenced

(supplementary table S4, Supplementary Material online).

The other WFDC genes did not show strong significant

P values pointing to a neutral evolution based on subspecies

genetic diversity (table 2). To confirm WFDC departures from

neutrality, we performed 105 coalescent simulations for each

subspecies under different demographic scenarios: constant

model (P. t. troglodytes, P. t. ellioti, P. t. verus), our best-fit

model (P. t. troglodytes, P. t. ellioti, P. t. verus), Hey 2010

model (P. t. troglodytes), and Wegmann and Excoffier 2010

model (P. t. verus). WFDC6 and EPPIN present significantly

negative Tajima’s D value compared with all models, but

while WFDC6 shows always values below 1st percentile,

EPPIN values lie between the 1st and 2.5th percentile (table 2).

The hypothesis of a recent positive selection was ex-

cluded due to the absence of LD blocks and homogeneous

haplotypes in P. t. troglodytes (supplementary fig. S5,

Supplementary Material online), which prevents long-range

haplotype tests from being calculated. To address the hypoth-

esis of an older selective sweep, we performed then MKT,

which did not show departures from neutrality in either

WFDC6 or EPPIN (results not shown). Notwithstanding, FST

statistic in the WFDC6–EPPIN region is the lowest in the

WFDC locus (supplementary fig. S6, Supplementary Material

online), and the networks built to assess the WFDC6 and

EPPIN haplotype structure show that WFDC6 has a star-

shaped genealogy shared among all subspecies (fig. 5 and

supplementary fig. S7, Supplementary Material online). The

findings show that in WFDC6 all NSyn variants are maintained

a very low frequencies and that the fixed difference K79E,

predicted to alter protein function in EPPIN, is also present in

bonobos (>1 Ma). This suggests strong purifying selection as

the likeliest cause for WFDC6 patterns of diversity.

To determine the levels of selective constraints operating

at WFDC6 and EPPIN, we aligned the publicly available se-

quences of both genes for eight primate species (chimpanzee,

human, gorilla, orangutan, gibbon, rhesus monkey, baboon,

and marmoset). The alignment shows that EPPIN has been

conserved in all the species. WFDC6 has released constraints

with signals of pseudogenization in orangutan, rhesus, and

baboon and appears to be absent in marmoset (fig. 6).

Evidence for WFDC6 pseudogenization includes a premature

stop codon (W86X) in orangutan, a very early stop codon

(S4X) and a five amino acid deletion (28 to 32) in rhesus

monkey, and a frameshift mutation (T99fs139X) shared be-

tween rhesus and baboon. Also striking is the loss of two

FIG. 3.—Folded SFS for the species that were resequenced. The x axis

depicts the frequency of the allele frequency bin in the generated data set,

whereas the y axis represents the number of alleles found within each

frequency bin. Syn, synonymous changes; NSyn, nonsynonymous

changes. (A) Folded SFS in WFDC locus; (B) folded SFS of WFDC locus

highlighting coding mutations.
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Table 2

Summary Statistics for All the WFDC Genes

Gene Subspecies L S n (10�4) hw D D* H P(HKA)

WFDC5 P. t. troglodytes 5,536 32 11.87 8.077 �0.4202 �0.3432 �1.6644 0.3858

WFDC12 P. t. troglodytes 1,323 16 3.026 4.039 �0.6318 0.4407 �0.6437 0.1866

PI3 P. t. troglodytes 3,377 25 7.748 6.310 �0.3775 0.1365 1.5448 0.9625

SEMG1 P. t. troglodytes 3,305 23 4.015 5.806 �1.172 �0.8307 �1.2782 0.7463

SEMG2 P. t. troglodytes 4,324 31 8.471 7.825 �0.8778 0.2350 �2.4092 0.9241

SLPI P. t. troglodytes 4,709 30 16.84 7.573 0.5078 0.6260 2.5195 0.9095

WFDC2 P. t. troglodytes 3,984 24 5.850 6.058 �0.7272 0.3391 �3.6322 0.4648

SPINT3 P. t. troglodytes 3,727 35 10.72 8.835 �0.8613 �0.9377 14.278 0.0604

WFDC6 P. t. troglodytes 2,807 19 1.269 4.796 �2.073** �2.290 �1.7839 0.1907

EPPIN P. t. troglodytes 3,233 23 2.356 5.806 �1.811* �2.218 5.2828 0.1362

WFDC8 P. t. troglodytes 7,179 36 9.139 9.087 �1.169 �1.054 0.5977 0.5583

WFDC9/10A P. t. troglodytes 6,863 44 16.64 11.11 �0.8419 �0.8662 2.0736 0.2643

WFDC11 P. t. troglodytes 5,037 58 37.48 14.64 �0.3621 �0.1044 9.0184 0.4493

WFDC10B/13 P. t. troglodytes 7,365 41 13.99 10.35 �0.9045 �0.8869 �5.0023 0.882

SPINT4 P. t. troglodytes 3,527 14 2.296 3.534 �0.7060 �0.1432 �1.9862 0.9805

WFDC3 P. t. troglodytes 7,572 51 20.48 12.87 �0.9501 �0.6436 �0.5163 0.4458

WFDC5 P. t. ellioti 5,536 24 9.751 5.110 0.8670 0.4099 �1.9799 0.1653

WFDC12 P. t. ellioti 1,323 7 1.277 1.491 0.8178 0.4173 �0.0063 0.9754

PI3 P. t. ellioti 3,377 14 3.947 2.981 0.9111 �0.4956 1.1021 0.3997

SEMG1 P. t. ellioti 3,305 28 3.491 5.962 �1.250 �0.5904 �0.9815 0.321

SEMG2 P. t. ellioti 4,324 22 2.378 4.685 �1.193 �0.4544 �0.1861 0.2107

SLPI P. t. ellioti 4,709 30 5.464 6.388 �0.8478 �1.875 4.6113 0.9302

WFDC2 P. t. ellioti 3,984 25 7.905 5.323 0.2832 �0.1960 5.2226 0.5012

SPINT3 P. t. ellioti 3,727 14 3.866 2.981 0.8654 0.5262 0.7953 0.2557

WFDC6 P. t. ellioti 2,807 13 1.364 2.768 �0.7455 �1.177 �1.6838 0.3477

EPPIN P. t. ellioti 3,233 23 3.936 4.898 �0.6386 �0.0079 12.0571 0.054

WFDC8 P. t. ellioti 7,179 29 5.759 6.175 �0.6888 �1.990 4.7842 0.3548

WFDC9 10A P. t. ellioti 6,863 28 10.18 5.962 0.3822 0.9311 3.1793 0.0392

WFDC11 P. t. ellioti 5,037 42 15.62 8.943 �0.1915 �0.1990 4.7848 0.2656

WFDC10B P. t. ellioti 7,365 29 6.956 6.175 �0.4046 �0.2142 0.055 0.2968

SPINT4 P. t. ellioti 3,527 14 0.8043 2.981 �1.498*** �1.007 4.3977 0.8262

WFDC3 P. t. ellioti 7,572 59 14.79 12.56 �1.182 �0.8554 15.3739 0.7554

WFDC5 P. t. verus 5,536 14 1.743 3.218 �0.8086 0.6041 9.148 0.4733

WFDC12 P. t. verus 1,323 7 1.396 1.609 0.7787 �1.027 �0.8393 0.1127

PI3 P. t. verus 3,377 7 1.979 1.609 1.6256 0.4908 0.8076 0.6147

SEMG1 P. t. verus 3,305 20 2.323 4.598 �1.2464 �0.8163 �1.4884 0.0296

SEMG2 P. t. verus 4,324 9 0.883 2.069 �0.7344 �1.207 �0.5666 0.2473

SLPI P. t. verus 4,709 14 2.797 3.218 �0.0454 1.071 0.8203 0.8173

WFDC2 P. t. verus 3,984 3 0.212 0.690 �0.4387 �0.3775 0.7653 0.3611

SPINT3 P. t. verus 3,727 9 1.865 2.069 0.5711 0.0750 3.3425 0.6688

WFDC6 P. t. verus 2,807 9 0.629 2.069 �1.1725 �0.5657 �1.0973 0.0616

EPPIN P. t. verus 3,233 7 1.523 1.609 0.9748 �0.2682 �0.4207 0.2532

WFDC8 P. t. verus 7,179 7 0.815 1.609 �0.2537 0.4908 �1.1501 0.0954

WFDC9/10A P. t. verus 6,863 22 3.333 5.057 �1.002 �0.2720 3.2896 0.4979

WFDC11 P. t. verus 5,037 25 7.986 5.747 0.0283 �0.3329 2.408 0.0605

WFDC10B/13 P. t. verus 7,365 14 3.356 3.218 0.3020 1.071 0.4249 0.4759

SPINT4 P. t. verus 3,527 6 1.062 1.379 0.6795 �0.4940 �0.4989 0.856

WFDC3 P. t. verus 7,572 32 17.27 7.356 0.6888 0.3704 12.222 0.8309

L, length sequenced (bp); S, number of segregating sites; p, nucleotide diversity per base pair (� 10�4); yw, Watterson’s estimator of y (4Nem) (Watterson 1975) per base
pair (� 10�4); D, Tajima’s D statistic (Tajima 1989); D*, Fu and Li’s D* test (Fu and Li 1993); H, Fay and Wu H test (Fay et al. 2002; Zeng et al. 2006); P(HKA), HKA test P value
(Hudson et al. 1987).

*P value �0.025 using three different demographic models (constant size, our best-fit model, and Hey 2010).

**P value <0.01 using three different demographic models (constant size, our best-fit model, and Hey 2010).

***P value �0.025 using our best-fitting model.
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disulfide bridges in the Kunitz domain for all the primates, the

species-specific loss of one disulfide bridge in the WAP

domain from gorilla and gibbon, and the loss of the SEMG1

binding residue in gibbon (C102A). Furthermore, the active

site conferring PSA inhibitory activity to EPPIN in WFDC6 was

modified from a leucine to a tryptophan (residue 87) in most

primates and to a stop codon in orangutan (fig. 6).

We calculated dN/dS (o) ratios for the paralogs WFDC6 and

EPPIN, under alternative models of gene evolution, for the

entire sequence data set after the exclusion of WFDC6 pseu-

dogenes (orangutan, rhesus, and baboon sequences). In cases

where no selection is operating, o should be equal to 1,

greater than 1 when purifying selection is acting to preserve

protein sequence, and significantly exceed 1 when positive

selection is acting to drive divergence of protein sequence.

We estimated a single o value for the entire phylogeny

(one-ratio), in which we assumed no differentiation in

WFDC6 and EPPIN selective pressures. The observed value

(o¼0.4739) is lower than one suggesting an overall conser-

vation of WFDC6 and EPPIN (supplementary fig. S8 and table

S5, Supplementary Material online) (Yang 2007). As these two

proteins are very similar, we examined whether the two para-

logs have been subject to different selective constraints

and applied the two-ratio model, allowing the branches that

correspond to WFDC6 and to EPPIN clades to have distinct

o values. The o value for WFDC6 was close to 1

(oWFDC6¼0.8846) and almost two times higher than that

for EPPIN (oEPPIN¼ 0.4738), but the model fit did not differ

significantly from the one-ratio model (�2�l¼1.04;

P value¼ 0.35). To determine whether WFDC6 was under

different selective constraints in chimpanzees, we performed

two more tests: a three-ratio model, where we define the

human and chimpanzee and their ancestor as one clade,

and another three-ratio model, where we define only the

chimpanzee WFDC6 as an independent clade. Although our

results suggest that WFDC6 might have experienced very

different selective pressures, as shown by the human–

chimpanzee oancWFDC6¼ 1.1656 and by the chimpanzee

oWFDC6¼ 0.5886, none of the new tests indicate a significant

departure from the two-ratio model (supplementary table S5,

Supplementary Material online). Note that the lack of signifi-

cance is likely due to the limited statistical power of this small

data set (only 131 codons).

Discussion

Here, we studied the sequence diversity at the WFDC locus

and 47 neutrally evolving regions chosen to control for

FIG. 4.—Empirical comparisons generated from the 47 control regions. Tajima’s D (Tajima 1989) was calculated for each region using SLIDER and plotted

with the 2.5 and 97.5 percentiles represented as dashed lines.

FIG. 5.—Inferred haplotype network at the WFDC6. Each circle rep-

resents a unique haplotype, and its area is proportional to its frequency.

Within each circle, Pan troglodytes verus, P. t. ellioti, and P. t. troglodytes

are labeled in green, purple, and orange, respectively. The mutations that

differentiate each haplotype are shown along each branch.
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demographic effects in three P. troglodytes subspecies, P. t.

troglodytes, P. t. ellioti, and P. t. verus. In our data set, we

inferred the strength of the selective pressures acting in WFDC

locus after retrieving the structural and geographical differen-

tiation of the three chimpanzee subspecies. This analysis

shows that P. t. verus is the least diverse subspecies and a

clear defined genetic entity, while the recently separated sub-

species P. t. ellioti and P. t. troglodytes are more diverse and

hardly discriminated even with a set of 1,268 autosomal SNPs.

In the WFDC locus, we pinpointed a single selective signal,

which has a high degree of interpopulation homogeneity

and identifies WFDC6 as a gene under purifying selection in

chimpanzees. We hypothesize that these selective constraints

were driven by a response to sexually transmitted pathogens,

as P. troglodytes is a promiscuous species and gets infected by

a plethora of infectious diseases in the wild.

The contribution of our data to the complex question of

chimpanzee demographic history is significant when consid-

ering the first model of P. t. ellioti. Even though P. t. ellioti and

P. t. troglodytes were hardly discriminated as two distinct pop-

ulations, we were capable to reconstruct the demographic

history of the three chimpanzee subspecies. We detected a

consistent differentiation of P. t. verus and confirmed that the

nucleotide diversity of P. t. verus is more similar to humans.

The low differentiation of P. t. troglodytes and P. t. ellioti is

consistent with their recent divergence 0.173 Ma and their

larger effective population sizes (>40,000 diploids). A history

of population expansion in P. t. troglodytes and P. t. ellioti is

plausible if a subdivision of ancestral population (Ne¼57,412)

is considered, and this could explain the negative Tajima’s D

trend in both subspecies (Fischer et al. 2004; Won and Hey

2005; Fischer et al. 2006; Caswell et al. 2008; Wegmann and

Excoffier 2010; Gonder et al. 2011; Bowden et al. 2012).

The signatures of selection identified in the human WFDC

locus are mainly associated with homogeneous long-range

haplotypes and variants located at SEMG1 (Asians), WFDC8

(Europeans), and SPINT4 (Africans), indicating a recent in-

crease in the frequency by selection and not by demographic

events (Ferreira et al. 2011; Ferreira et al. 2013). In chimpan-

zees, we assessed the signatures of positive selection by com-

paring the WFDC genes with the empirical distribution built

from 47 neutrally evolving regions and with simulated null

distributions of chimpanzee demography. Even though we

could not detect LD blocks or extended haplotypes in our

sequenced data, we found lower levels of nucleotide diversity

in WFDC6 and EPPIN genes while compared with other chim-

panzee loci. The significantly negative HKA P value obtained

for the total sample set together with the low subspecies dif-

ferentiation indicated by FST and the low frequencies of NSyn

variants is suggestive of a signature of an old event of purify-

ing selection in WFDC6 and EPPIN in P. troglodytes.

To our knowledge, no experimental studies were per-

formed to determine WFDC6 biological functions. However,

WFDC6 is considered a recent paralog of EPPIN with 71%

sequence similarity and sharing of the same protein functional

domains (WAP and Kunitz). EPPIN is known to protect SEMG1

from premature cleavage by its natural protease, PSA, a pro-

tease inhibitor activity conferred by L87 residue (P1 reactive

site) located in the Kunitz domain. Other recognized roles of

EPPIN are its antimicrobial and antiviral activities, providing

protection of the spermatozoa (Yenugu et al. 2004). Due to

its important functions in reproduction in primates, it is not

unexpected that some level of purifying selection is acting on

EPPIN to prevent NSyn mutations from altering its important

biological functions. Even in primates experiencing lower

levels of postcopulatory selection and lower semen coagulum

thickness like gorilla (Dorus et al. 2004), it seems that the role

of EPPIN in modulating the cleavage of SEMG1 is not affected.

However, WFDC6, which shows the strongest signature of

purifying selection in chimpanzees, does not share the same

leucine residue at the reactive site, instead it has in position 87

a tryptophan (W). It is also noticeable that the majority of the

replacements seen in WFDC6 include cysteines from the

Kunitz domain, which in EPPIN are engaged in disulfide

bonds. Therefore, we hypothesize that the serine-protease

activity of WFDC6 would be impaired or targeted to a differ-

ent protease other than PSA. On the other hand, the WAP

domain has a highly conserved amino acidic composition

between both genes, and the maintenance of the disulfide

bridges suggests that the antimicrobial properties of this

domain will be maintained (Wilkinson et al. 2011).

Disease transmission during mating provides a connection

between reproduction and immunity, where sexually trans-

mitted diseases (STDs) can affect fitness of individuals by im-

posing different selective pressures on their hosts. Previous

studies found a positive correlation between levels of leuko-

cytes (indicator of immunocompetence) and several proxies of

female sexual promiscuity among species of primates with

different mating systems (Nunn et al. 2000; Nunn 2003,

2002). The lack of associations with several other social, eco-

logical, and life history variables led to the hypothesis that

increased levels of transmission of STDs in promiscuous spe-

cies have resulted in the evolution of a greater investment in

immune response (Holmes 2004; Wlasiuk and Nachman

2010). Chimpanzees are classified as one of the most promis-

cuous primate species, where previous signals of rapid evolu-

tion of sperm proteins (SEMG1 and SEMG2) were found

(Jensen-Seaman and Li 2003; Dorus et al. 2004; Hurle et al.

2007). Instead, humans, gorillas and gibbons are not promis-

cuous, maintaining a monoandrous mating system being less

subject to STDs.

We hypothesize that chimpanzees, as a promiscuous spe-

cies, are likely to be more exposed to STD (Nunn et al. 2000;

Wlasiuk and Nachman 2010; Garamszegi and Nunn 2011).

After the duplication event that originated WFDC6, an episode

of rapid evolution may have occurred allowing for the accu-

mulation of amino acid replacements. Later in chimpanzee

evolution, the newly originated WFDC6 appears to have
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been preserved by strong selective constraints, perhaps repre-

senting an adaptive response to a higher load of pathogens.

Conversely, in less promiscuous species like orangutan, rhesus,

and baboon, the signals of pseudogenization present on

WFDC6 seem to be associated with more relaxed constraints

(higher o values) and lower pathogen exposure or to the

exploitation of different mechanisms of immune defense

(Nunn et al. 2000; Nunn 2003; Anderson et al. 2004;

Holmes 2004). However, as WFDC6 biological functions and

target molecules have not been explored yet, our hypothesis

regarding the purifying selective pressures cannot be totally

elucidated.

Overall, our data provide support for a clear genetic differ-

entiation of P. t. verus, for a recent divergence of P. t. troglo-

dytes and P. t. ellioti subspecies, and for a single departure of

neutrality in the WFDC locus due to strong selective constrains

acting on WFDC6. We hypothesize that the latter may be due

to an adaptive process associated to the expanded antimicro-

bial spectrum of WFDCs in the male reproductive tract.

Supplementary Material

Supplementary figures S1–S8 and tables S1–S5 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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